Text-as-Data

DS-GA 3001-003

Spring Semester 2018
Tuesdays 11:00 AM - 12:40 PM Lecture 60 Fifth Avenue, C12

Prof. Arthur Spirling
CDS, 60 Fifth Ave, 701
arthur.spirling@nyu.edu
Office Hours: Tuesday, 2–3PM

Teaching Assistant: Ms Leslie Huang
Office: 19 West 4th Street, 230
lh1036@nyu.edu
Office Hours: Thursday, 1245–145PM

Prerequisites
At the very least, students should have a first class in statistics and/or inference under their belt before taking this course. In particular, basic knowledge of calculus, probability, densities, distributions, statistical tests, hypothesis testing, the linear model, maximum likelihood and generalized linear models is assumed. The core language and software environment of this course is R. If you are not familiar with R, you will struggle with the assigned exercises. Please check with the instructor if you are unclear as to whether you are qualified for this course.

Overview
The availability of text data has exploded in recent times, and so has the demand for analysis of that data. This course introduces students to the quantitative analysis of text from a social science perspective, with a special focus on politics. The course is applied in nature, and while we will give some theoretical treatment of the topics at hand, the primary aim is to help students understand the types of questions we can ask with text, and how to go about answering them. With that in mind, we first explain how texts may be modeled as quantitative entities and discuss how they might be
compared. We then move to both supervised and unsupervised techniques in some detail, before dealing with some ‘special topics’ that arise in particular lines of social science research. Ultimately, the goal is to help student conduct their own text as data research projects and this class provides the foundations on which more focused, technical research can be built.

While many of the techniques we discuss have their origins in computer science or statistics, this is not a CS class: we will spend relatively little time on traditional Natural Language Processing issues (such as machine translation, optical character recognition, parts of speech tagging etc). Other offerings in the university cover those matters more than adequately. Similarly, this class will not much deal with obtaining text data: again, there are excellent classes elsewhere dealing with e.g. web-scraping.

Structure

This course provides once-weekly meetings (two 50 minute lectures) with the instructing professor, and a 50 minute section with the TA. Enrolled students must attend all meetings. The information and skills that you need to complete your homework assignments and term projects will be provided by the Professor or the TA.

Sections: your TA will hold section Thu 2.00 PM - 2.50 PM 60 5th Avenue, Room C12. If you can’t make the section, you cannot be in the class. The TA’s github (where lab information and resources will be posted) can be found here: https://github.com/leslie-huang

Assessment

There are no written exams in the class, and your grade will be based on a combination of:

• Homeworks (50%): There will be (at least) three homeworks, all of which will involve modeling and coding of text data, and some theoretical work. Intellectual honesty is important at NYU: you may confer with colleagues, but all work on the homework must be your own. If you copy work or allow another student to copy your work, the homework will be graded zero and your case will be passed to appropriate authorities in the university.

• Final Paper (50%): There will be a final written paper of not longer than 12 double spaced pages of text, which explores an original research project or idea. This may be substantive or technical in nature. You are encouraged to work in teams of up to two people on this paper. The deadline for the paper will be May 11, 2017 with no extensions or exceptions.

Software

We will be using R, a statistical package. You can download and install R for free, from here: https://cran.r-project.org/

To write and edit R code, you can use any software with which you are familiar and/or enjoy using. We suggest R Studio, which is free:

https://www.rstudio.com/products/RStudio/
Textbooks and Reading

There are no required textbooks for the course. We will draw from some of the following (and other places!), and will make efforts to provide the readings online where appropriate:

Because the class is focussed on answering substantive questions with the techniques on offer, many of the readings are applied in nature.

COURSE SCHEDULE

1 Jan 23: Introduction and Overview

- scope of the course
- quantitative vs qualitative ‘reading’ of texts
- necessary prerequisites in programming and statistics

Reading

2 Jan 30: Representing Text

- vector space model of a document
- feature choices/representation
- pre-processing: stemming and stopping
- bag of words (and alternatives)
- sparseness
Reading

- MRS ch 6 “Scoring, term weighting and the vector space model”

3 Feb 6: Descriptive Inference I

- word distributions: Zipf’s Law/Heap’s Law
- co-occurrence, collocations and phrasemes
- key words in context
- dis(similarity) measures and testing for differences

Reading

- MRS, Ch 5

4 Feb 13: Descriptive Inference II

- lexical diversity
- sophistication/readability/complexity
- linguistic style and author attribution
- sampling distributions for estimates

Reading

5 Feb 20: Supervised Techniques I

- dictionary based approaches
- sentiment (and other) dictionaries, LIWC
- Goldman-Sachs case study
- event extraction
- lie detection

Reading

6 Feb 27: Supervised Techniques II

- classification of documents
- evaluation of techniques: precision, recall
- crowdsourcing
- Naive Bayes Classification, estimating proportions
- ideological scales with 'wordscores'

Reading
- MRS. “Text classification and Naive Bayes”.
- Michael Laver, Kenneth Benoit, and John Garry. 2003. Extracting policy positions from political texts using words as data American Political Science Review 97(2)
7 Mar 6: Supervised Techniques IIIA

- basics/varieties of machine learning
- support vector machines

Reading

Mar 13: Spring Break, no class

8 Mar 20: From Supervised to Unsupervised

Supervised Techniques IIIB

- k-NN models
- random forests/tree techniques
- ensembles

Reading

Unsupervised Techniques I

- fundamentals of unsupervised learning
- (principal) components and data reduction
- singular value decomposition
9 Mar 27: Unsupervised Techniques II

- clustering (documents)
- Latent Semantic Analysis/Indexing
- parametric scaling of political speech
- count models: ‘wordfish’
- basics of semi-supervised techniques

Reading

10 Apr 3: Unsupervised Techniques III

- plate notation/graphical model
- basics of Bayesian methods
- Latent Dirichlet Allocation and Topic Modeling
- Variational Inference
- model selection/choosing k

Reading
- DM Blei and MI Jordan, 2006. Variational inference for Dirichlet process mixtures, Bayesian Analysis, Volume 1, Number 1, 121–143.

11 Apr 10: Unsupervised Techniques IV

- Correlated Topic Model
- Dynamic Topic Model
- Structural Topic Model
- Embeddings: Word2Vec

Reading

Apr 17: Work on Final Project, no lecture (will set up consulting time)

12 Apr 24: Special Topics I

- modeling debate and discourse
- networks of communication
- bursts and memes

Reading

• Cristian Danescu-Niculescu-Mizil, Robert West, Dan Jurafsky, Jure Leskovec, Christopher Potts. 2013. No Country for Old Members: User Lifecycle and Linguistic Change in Online Communities, Proceedings of WWW.

13 May 1: Special Topics II

• beyond bag-of-words: word order
• bigrams, trigrams
• hashes and word-reuse
• plagiarism detection, edit distance

Reading

14 May 8: Final Projects Due

• Class presentations of projects + discussion
• 6 mins and 3 slides only!