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Course Description

Social actors interact using language. As a result, testing social science theories usually re-
quires analyzing, in one way or another, written language. Thankfully, recent advances in
computational linguistics have considerably increased the reach of scholars interested in work-
ing with textual data. Moreover, swathes of digitized documents have been made available
to researchers in recent years. This includes parliamentary records, committee proceedings,
bills, laws, international treaties, news reports, social media discussions, blogs, websites, and
so forth. How to process and analyze such large quantities of textual data meaningfully is
the central focus of this course.

The course introduces students to the state of the art in the field of computational text
analysis. It covers the most widely used methods for the empirical analysis of textual data,
from the preprocessing stages to the interpretation of findings. The course also includes
an introduction to machine learning. By the end of this course, students will have gained
expertise with an important branch of computational social science. They will also have
developed skills with the Python programming language.

Course Format

The course takes place in the Sidney Smith computer lab. Classes will be a combination of
advanced lectures and interactive exercises, every Wednesdays. Registered students will also
be invited to present an independent research project during the last weeks of the course.
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Software

Since the course takes place in a computer lab, students will be provided with the software
tools needed to practice exercises and reproduce examples during class. Although students
may choose to use software packages of their liking to conduct their term paper, most class
exercises and demonstrations will be performed using the Python programming language. If
time permits, some examples using the R language for statistical computing and the Weka

library will also be incorporated into the lectures.
Class examples will rely upon Python version 2.7. Computers in the SS Lab will be

equipped with the Anaconda distribution of Python, which already includes all required
libraries for this course. In-class examples will be provided from the Jupyter notebook, a
user-friendly environment for interactive computing.

Python is freely available on all operating systems (and so are Anaconda and Jupyter).
Therefore, students can easily reproduce exercises and replicate examples on their personal
computers. Students who do not dispose of a personal computer may practice and perform
required assignments in one of several computer labs on the campus.

Requirements

Although there are no formal requirements for the course, some background in statistical
analysis and/or computing is strongly recommended. It is assumed that students will have
completed POL 2504 or the equivalent beforehand, which should prepare them for this course.

The course involves some advanced concepts in programming and statistics. However,
the pedagogical approach is tailored to students who may not have had an extended training
in mathematics or computing as undergraduate students (as is often the case in the social
sciences).

Marking Scheme

Written Assignment #1 20% Due: October 19, 2016
Written Assignment #2 20% Due: November 9, 2016
Oral Presentation 15% During the last two or three weeks

(depending on enrollment)
Term Paper 35 % Due: December 8, 2016
Participation 10 %

Readings

No textbook is perfectly tailored to the needs of this course. Instead, we will focus on a
collection of chapters from the following set of textbooks. Together they will cover most of
the material under study. The readings recommended for each class can be very helpful to
supplement the lecture notes that will be made available to students. All of these books
are accessible online, either from their authors’ websites or electronically through the UofT
Library.

� Bird, Steven, Ewan Klein and Edward Loper. 2009. Natural Language Processing with

Python. O’Reilly Media.

◦ An accessible introduction to natural language processing in Python, mostly using
the nltk package. The book is available online for free.
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� Manning, Christopher D., Prabhakar Raghavan and Hinrich Schütze. 2009. An Intro-

duction to Information Retrieval. Cambridge: Cambridge University Press.

◦ A key reference that covers most of the topics discussed in this course, and more.
Online versions are available.

� Jurafsky, Daniel and James H. Martin. 2008. Speech and Language Processing. New
Jersey: Prentice Hall.

◦ Another useful reference for exploring some of the topics in more depth. Some
chapters are available online for free.

� Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural
Language Processing. Cambridge: MIT Press.

◦ An older reference that nonetheless covers key basic concepts for this course. The
book is available electronically through the UofT Library.

� Hastie, Trevor, Robert Tibshirani and Jerome Friedman. 2009. The Elements of Sta-

tistical Learning. 2nd Edition. Berlin: Springer.

◦ A useful reference on the particular topic of machine learning. The book is available
electronically through the UofT Library.

Evaluations

The course uses a variety of evaluation formats to help students develop different skills related
to scientific research.

Written Assignments

The written assignments are problem sets designed to evaluate students’ ability to put the
methods learned into practice. They may involve practicing various types of textual analysis
using Python and answering short factual questions about the models and their interpretation.

There is no better way to improve one’s skills than practice. Therefore, those exercises
are not only useful as evaluations, but also as a way for students to gain concrete expertise
with the subject-matter. Assignments are done individually. They are handed in during class
at the due date, or else submitted directly by email to the instructor.

Oral Presentation

During the last weeks of the course, registered students will take turns to present the research
project they are working on for the term paper. The presentations are between 5 and 10
minutes, followed by reactions from the audience.

At the time of the presentation, the research project will likely not be completed. Students
will not be evaluated based on the results that they have obtained. Instead, the goal of the
presentation is to evaluate whether students are able to invoke the concepts and methods
studied during the course clearly and efficiently.

After each presentation, the rest of the class will be invited to formulate constructive
comments, which may help the presenter to complete the term paper.
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Term Paper

The term work takes the form of a scientific report in which students propose an application
using any of the models for computational text analysis discussed during the course. This
represents the empirical section of a research paper on a topic of the graduate student’s
choosing. Students can use one of the corpora examined in class or use their own data
sources. Pending approval from their supervisor, graduate students may opt to work on a
draft of a dissertation chapter.

The term paper will include a brief introduction stating the research question, an outline
of the theory and some testable propositions (hypotheses). The main part of the term paper
(roughly 4,000 words), however, consists of presenting an analysis involving textual data. The
paper is expected to introduce the empirical research design and proceed with the key stages
of the empirical analysis. Students should make sure to provide the replication scripts along
with their study.

Class Schedule: Summary

Date Topic Evaluation

September 14 Computers, Language and Corpus Preprocessing
September 21 Introduction to Python
September 28 Statistics for Textual Data I
October 5 Statistics for Textual Data II
October 12 Natural Language Processing
October 19 Lexicons and Vector Space Models Assignment Due
October 26 Introduction to Machine Learning
November 2 Supervised Learning I
November 9 Supervised Learning II Assignment Due
November 16 Unsupervised Learning I (Student Presentations)
November 23 Unsupervised Learning II (Student Presentations)
November 30 Advanced Topics (Student Presentations)

December 8 [End of Semester] Term Paper Due

Note: Topics by date are for information only. The schedule above (and the detailed structure in the following
pages) may by adjusted during the term due to unforeseen circumstances, the availability of special guests, or
to improve the pedagogical benefits to students.
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Class Schedule: Detailed

Topic 1: Computers and Text

September 14: Computers, Language and Corpus Preprocessing

1. Brief history of computational text analysis.
2. Examples of recent applications.
3. How computers encode text.
4. Working with foreign languages.
5. Preprocessing textual data.
6. Some fundamentals of natural language processing.
7. Overview of Python.

September 21: Introduction to Python

1. Introduction to Python.
2. Data types, lists and dictionaries.
3. Input/Output.
4. Functions and conditional statements.
5. Encoding text.
6. Processing textual data in Python.
7. Exercise: Parsing html and xml data.

Readings

� Bird, Klein, and Loper (2009), Ch. 2–4.
� Manning and Schütze (1999), Ch. 1.

Other Useful References

� Aggarwal and Zhai (2012b).
� McKinney (2013), Ch. 1.
� Downey, Elkner, and Meyers (2002), Ch. 1–2.
� D’Orazio et al. (2014).
� Jockers (2014).
� Weiss, Indurkhya, and Zhang (2015).
� Krippendorff (2013), Ch. 4.
� Watch a 45-minute introductory video on Python.
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Topic 2: Statistics for Textual Data

September 28: Statistics for Textual Data I

1. Document retrieval and indexing.
2. Tokenization, sentence splitting.
3. Word counts and word distributions.
4. Heaps’ and Zipf’s Laws.
5. Vectorization.
6. Visualization techniques.

October 5: Statistics for Textual Data II

1. Term-frequency/inverse document frequency (tf–idf) weighting.
2. Word co-occurrences.
3. Comparing texts.
4. Statistical properties of texts.
5. Examples of applications: Wordscores and Wordfish.

Readings

� Manning, Raghavan, and Schütze (2009), Ch. 1–2.
� Manning and Schütze (1999), Ch. 5–6.

Other Useful References

� Bird, Klein, and Loper (2009), Ch. 2–4.
� Jiang (2012).
� Nenkova and McKeown (2012).
� Zipf (1932).
� Porter (1980).
� Python Online Documentation.

Examples of Applications

� Laver and Garry (2000).
� Laver, Benoit, and Garry (2003).
� Alfini and Chambers (2007).
� Lowe (2008).
� Slapin and Proksch (2008).
� Gentzkow and Shapiro (2010).
� Proksch and Slapin (2010).
� Black et al. (2011).
� Däubler et al. (2012).
� Acton and Potts (2014).
� Yu (2014).
� Spirling (2016).
� Blaxill and Beelen (2016).
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Topic 3: Linguistics and Natural Language Processing

5. October 12: Introduction to Natural Language Processing

1. Overview of linguistic theory.
2. Unigrams, bi-grams and n-grams.
3. Part-of-speech tagging.
4. Stemming and lemmatization.
5. Grammar parsing.
6. Named entity recognition.

6. October 19: Lexicons and Vector Space Models

1. Creating and using word lexicons (dictionaries).
2. Summarizing text properties.
3. Vector space representation.
4. Word similarities and word relations.
5. Latent semantic analysis (LSA).

Readings

� Bird, Klein, and Loper (2009), Ch. 5.
� Manning and Schütze (1999), Ch. 3, 10.
� Turney and Pantel (2010).

Other Useful References

� Manning, Raghavan, and Schütze (2009), Ch. 6.
� Jurafsky and Martin (2008), Ch. 9–10.
� Miller et al. (1990).
� Mikolov et al. (2013).
� Manning et al. (2014).
� Landauer, Foltz, and Laham (1998).
� Python Online Documentation.

Examples of Applications

� Bollen, Mao, and Zeng (2011).
� Bollen, Mao, and Pepe (2011).
� Golder and Macy (2011).
� Michel et al. (2011).
� Young and Soroka (2012).
� Jensen et al. (2012).
� Coviello et al. (2014).
� Gentzkow, Shapiro, and Taddy (2016).
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Topic 4: Machine Learning

October 26: Introduction to Machine Learning

1. Machine learning and classification.
2. Annotating texts and intercoder reliability.
3. Development, training and testing.
4. An introductory example: sentiment analysis.

November 2: Supervised Learning I

1. Features and classes.
2. “Bag of words” approach.
3. Feature selection.
4. Naive Bayes classifiers.
5. Nearest Neighbor classifiers.
6. Multi-class problems.

November 9: Supervised Learning II

1. Evaluating classifiers.
2. Accuracy measures.
3. Ridge regression.
4. Support vector machines.
5. Applications in Python.

November 16: Unsupervised Learning I

1. Unsupervised learning.
2. Motivating example: topic classification.
3. Clustering analysis.
4. Principal component analysis.

November 21: Unsupervised Learning II

1. Latent Dirichlet Allocation (LDA).
2. Correlated and dynamic LDA.
3. Examples of applications.
4. Student presentations.

Readings

� Hastie, Tibshirani, and Friedman (2009), Ch. 2, 6–7, 12.
� Bird, Klein, and Loper (2009), Ch. 6.
� Steyvers and Griffiths (2011).
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Other Useful References

� Manning, Raghavan, and Schütze (2009), Ch. 15.
� Shawe-Taylor and Cristianini (2000).
� Blei, Ng, and Jordan (2003).
� Blei and Lafferty (2006a).
� Blei and Lafferty (2006b).
� Blei (2012).
� Hayes and Krippendorff (2007).
� He and Garcia (2009).
� Aggarwal and Zhai (2012a).
� Richert and Coelho (2013).
� Lantz (2013).
� James et al. (2013).
� Raschka (2015).
� scikit-learn for Python: Online Documentation.

Examples of Applications

� Mosteller and Wallace (1964).
� Airoldi, Fienberg, and Skinner (2007).
� Monroe, Colaresi, and Quinn (2008).
� Yu, Kaufmann, and Diermeier (2008).
� Hopkins and King (2010).
� Grimmer (2010).
� Grimmer, Messing, and Westwood (2012).
� Diermeier et al. (2012).
� Hirst et al. (2014).
� Roberts et al. (2014).
� D’Orazio et al. (2014).
� Lucas et al. (2015).
� Harris (2015).
� Reich et al. (2015).
� Roberts, Stewart, and Airoldi (2016).
� Tingley (2016).
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Topic 5: Advanced Topics and Wrap-Up

November 30: Overview of Advanced Topics (As Time Permits)

1. Regular expressions.
2. Web-scraping and online text data retrieval.
3. Neural networks and deep learning.
4. Student presentations (continued).

Readings

� Hastie, Tibshirani, and Friedman (2009), Ch. 11.
� Aggarwal (2012).
� Hu and Liu (2012).

Other Useful References

� Mitchell (2015).
� Munzert et al. (2015).
� Bengio, Goodfellow, and Courville (2016).
� Beautiful Soup for Python: Online Documentation.
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